Six-co-ordinate 1,2-dithiolene complexes of tungsten(I) of the type [W (S-S)(CO $\left.)_{2} \mathrm{~L}_{2}\right]\left[\mathrm{S}-\mathbf{S}=\mathrm{C}_{3} \mathbf{S}_{5}\right.$, benzene-1,2-dithiolate or maleonitriledithiolate; $\mathrm{L}_{2}=\left(\mathrm{PPh}_{3}\right)_{2},\left(\mathrm{PEt}_{3}\right)_{2}$ or $\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{PPh}$]

Paul K. B aker, ${ }^{*, a}$ M ichael G. B. D rew, ${ }^{*, b}$ E mma E. Parker, ${ }^{\text {a }}$ N eil R obertson ${ }^{\text {a }}$ and A llan E. U nderhill ${ }^{\text {a }}$
a D epartment of Chemistry, U niversity of W ales, B angor, Gwynedd LL57 2UW , UK
${ }^{\mathrm{b}}$ D epartment of Chemistry, U niversity of R eading, W hiteknights, R eading RG6 2AD, UK

Abstract

Reaction of the complexes $\left[\mathrm{WI}_{2}(\mathrm{CO})_{3} \mathrm{~L}_{2}\right]\left[\mathrm{L}_{2}=\left(\mathrm{PEt}_{3}\right)_{2},\left(\mathrm{PPh}_{3}\right)_{2}\right.$ or $\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{PPh}_{2}=$ dppe] with 1 equivalent of $\mathrm{Na}_{2}[\mathrm{~S}-\mathrm{S}]\left(\mathrm{S}-\mathrm{S}=\mathrm{C}_{3} \mathrm{~S}_{5}\right.$ or maleonitriledithiolate) or H_{2} bdt (benzene-1,2-dithiol) in acetonitrile and ethanol at room temperature afforded good yields of the six-co-ordinate compounds [W $(\mathrm{S}-\mathrm{S})(\mathrm{CO})_{2} \mathrm{~L}_{2}$] by displacement of the iodide ligands and a carbonyl ligand. X-R ay crystallographic studies were carried out on [W (S-S)(CO) $\mathbf{L}_{2} \mathrm{~L}_{2}$] $\left[\mathrm{S}-\mathrm{S}=\mathrm{C}_{3} \mathrm{~S}_{5}, \mathrm{~L}_{2}=\left(\mathrm{PEt}_{3}\right)_{2} ; \mathrm{S}-\mathrm{S}=\mathrm{bdt}, \mathrm{L}_{2}=\left(\mathrm{PEt}_{3}\right)_{2}\right.$ or $\left.\mathrm{L}_{2}=\mathrm{dppe}\right]$. The three structures are all six-co-ordinate with geometries intermediate between octahedral and trigonal prismatic but closer to the latter.

The importance of transition-metal complexes containing dianionic delocalised sulfur-donor chelating ligands, such as $\mathrm{C}_{3} \mathrm{~S}_{5}{ }^{2-}$ (4,5-disulfanyl-1,3-dithiole-2-thionate) and mnt (mnt = maleonitriledithiolate), has increased in recent years. M any examples of solid-state materials derived from these complexes have been shown to conduct electric currents, display unusual magnetic properties and have non-linear optical properties. ${ }^{1-3}$ Although many examples of square-planar complexes have been described such as β - $\left[\mathrm{NM} \mathrm{e}_{4}\right]\left[\mathrm{Pd}\left(\mathrm{C}_{3} \mathrm{~S}_{5}\right)_{2}\right]_{2}$, which is a superconductor at $2 \mathrm{~K},{ }^{4}$ few examples of organotransition-metal complexes containing $\mathrm{C}_{3} \mathrm{~S}_{5}$ and mnt are known. Two early examples are the bis(cyclopentadienyl) complexes [M (mnt)$\left.(\mathrm{cp})_{2}\right] \quad\left(\mathrm{M}=\mathrm{Mo}\right.$ or W), ${ }^{5}$ and in 1970 Eisenberg ${ }^{6}$ comprehensively reviewed 1,1- and 1,2-dithiolato-chelate complexes, including their organotransition-metal complexes. Several molybdenum complexes containing cp or $\mathrm{C}_{5} \mathrm{M}_{5}$ and dithiolene ligands have been recently studied including [Mo(dmit) $)_{2}(\eta$ $\left.\left.\mathrm{C}_{5} \mathrm{Me}_{5}\right)\right]^{7}$ and the charge-transfer salt $\left[\mathrm{Mo}(\mathrm{dddt})(\mathrm{cp})_{2}\right][\mathrm{tcnq}]^{8}$ (dddt = 5,6-dihydro-1,4-dithiin-2,3-dithiolate, \quad tcnq $=$ tetracyanoquinodimethane) which display co-operative low-temperature magnetic phenomena. Other mixed cp-dithiolene complexes which have also recently been studied are complexes of $\mathrm{Fe},{ }^{9} \mathrm{Co},{ }^{10} \mathrm{Ti}^{11}$ and $\mathrm{Ru} .{ }^{12} \mathrm{~F}$ ewer examples exist of complexes containing dithiolene and phosphorus ligands; the adducts $\left[\mathrm{Co}\left(\mathrm{S}_{2} \mathrm{C}_{2} \mathrm{X}_{2}\right)(\mathrm{cp}) \mathrm{L}\right]^{10}(\mathrm{~L}=$ tributylphosphine or tributyl phosphite) and the cluster $\left[\mathrm{Au}_{10}(\mathrm{mnt})_{2}\left(\mathrm{PPh}_{3}\right)_{7}\right]^{13}$ being rare examples. The organometallic square planar platinum complex $\left[\mathrm{Pt}(\mathrm{mnt})(\mathrm{CNMe})_{2}\right] \cdot(\mathrm{NC})_{2} \mathrm{C}_{2} \mathrm{~S}_{2} \mathrm{CNM}$ e has recently been shown crystallographically to demonstrate costacking of neutral planar metal and organic molecules. ${ }^{14}$

Over the past ten years we have been investigating the chemistry of the highly versatile seven-co-ordinate complexes $\left[\mathrm{M}_{2}-\right.$ $\left.(\mathrm{CO})_{3}(\mathrm{NCMe})_{2}\right](\mathrm{M}=\mathrm{Mo}$ or W$)$ and their derivatives. ${ }^{15}$ Continuing our exploration of the chemistry of these and related complexes, in this paper we describe the reactions of the seven-co-ordinate complexes $\left[\mathrm{WI}_{2}(\mathrm{CO})_{3} \mathrm{~L}_{2}\right]\left[\mathrm{L}_{2}=\left(\mathrm{PEt}_{3}\right)_{2},\left(\mathrm{PPh}_{3}\right)_{2}\right.$ or $\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}$ (dppe)] with 1 equivalent of $\mathrm{Na}_{2}[\mathrm{~S}-\mathrm{S}]$ ($\mathrm{S}-\mathrm{S}=\mathrm{C}_{3} \mathrm{~S}_{5}$ or mnt) or H_{2} bdt (bdt = benzene-1,2-dithiolate) to give the novel six-co-ordinate complexes $\left[\mathrm{W}(\mathrm{S}-\mathrm{S})(\mathrm{CO})_{2} \mathrm{~L}_{2}\right]$. The molecular structures of $\left[\mathrm{W}(\mathrm{S}-\mathrm{S})(\mathrm{CO})_{2}\left(\mathrm{PEt}_{3}\right)_{2}\right]\left(\mathrm{S}-\mathrm{S}=\mathrm{C}_{3} \mathrm{~S}_{5}\right.$ or bdt) and [W (bdt)(CO) $\left.)_{2}(\mathrm{dppe})\right]$ are also described.

Results and D iscussion

The starting materials for this research, namely $\left[\mathrm{WI}_{2}(\mathrm{CO})_{3} \mathrm{~L}_{2}\right]$
$\left[\mathrm{L}_{2}=\left(\mathrm{PEt}_{3}\right)_{2}{ }^{16}\left(\mathrm{PPh}_{3}\right)_{2}^{17}\right.$ or dppe $\left.{ }^{18}\right]$ were prepared by treating $\left[\mathrm{WI}_{2}(\mathrm{CO})_{3}\left(\mathrm{NCMe}_{2}\right]\right.$ with 2 equivalents of $\mathrm{L}=\mathrm{PEt}_{3}$ or PPh_{3} or 1 equivalent of dppe. The complexes $\left[\mathrm{WI}_{2}(\mathrm{CO})_{3} \mathrm{~L}_{2}\right.$] react at room temperature with 1 equivalent of $\mathrm{Na}_{2}[\mathrm{~S}-\mathrm{S}]\left(\mathrm{S}-\mathrm{S}=\mathrm{C}_{3} \mathrm{~S}_{5}\right.$ or mnt) or H_{2} bdt to give good yields of the six-co-ordinate complexes $\left[W(S-S)(C O)_{2} L_{2}\right]$ 1-9 by the displacement of the iodide ligands and loss of a carbonyl ligand. All the new complexes have been fully characterised by elemental analysis (C, H and N), infrared (Table 1) and ${ }^{1}$ H N M R spectroscopy (Table 2); 2, $\mathbf{3}$ and 8 were also characterised by ${ }^{31}$ P N M R spectroscopy (Table 2). Complexes $\mathbf{2 , 5} 5$ and $\mathbf{6}$ wereal so crystallographically characterised. A lthough the solid-state crystal structure of the complex [W (bdt)(CO) $)_{2}$ (dppe)] 6 occurs as a $0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvate, the bulk material did not show a $0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvate in the ${ }^{1} \mathrm{H} N M R$ spectrum and repeated elemental analysis agreed with the nonsolvate formulation. The FAB mass spectra of the complexes [W $\left.\left(\mathrm{C}_{3} \mathrm{~S}_{5}\right)(\mathrm{CO})_{2} \mathrm{~L}_{2}\right]\left[\mathrm{L}_{2}=\left(\mathrm{PEt}_{3}\right)_{2}\right.$ or dppe] show their molecular ions at $\mathrm{m} / \mathrm{z} 672\left[\mathrm{~L}_{2}=\left(\mathrm{PEt}_{3}\right)_{2}\right]$ and $834\left[\mathrm{~L}_{2}=\mathrm{dppe}\right]$. M agnetic susceptibility measurements have shown complexes 1-9 to be diamagnetic. The bis(triethylphosphine) complexes are soluble in diethyl ether and chlorinated solvents, whereas the $\left(\mathrm{PPh}_{3}\right)_{2}$ and dppe complexes were considerably less soluble but were soluble in polar chlorinated solvents such as $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and CHCl_{3}. All the complexes were stable when stored under nitrogen, however they decomposed in solution when exposed to air.

The characteristic absorption bands for the dithiolene ligands are present in the infrared spectra; comparison of the bands arising from the $\mathrm{C}=\mathrm{C}$ and the $\mathrm{C}-\mathrm{S}$ bonds of the metalbound dithiolene and the free dithiolene show only a slight change in frequency. The stretching frequency of the $\mathrm{C}-\mathrm{S}$ bond in the ligated dithiolene is slightly lower than in the free dithiolene, as would be expected when bound in a bidentate manner to a metal complex. It has been observed that the $\mathrm{C}=\mathrm{C}$ stretching mode in square-planar dithiolene complexes reduces in frequency as the charge on the molecule is decreased consistent with a reduction in bonding electron density at this position. The detection of this band at about $1430 \mathrm{~cm}^{-1}$ for the complexes described here is suggestive of highly negatively charged dithiolene ligands bearing approximately a full double negative charge. ${ }^{19}$ The absorption bands in the regions 1937-1961 and $1863-1889 \mathrm{~cm}^{-1}$ correspond to the two cis-carbonyl groups attached to the tungsten centre. The capping carbonyl bands observed in the infrared spectra of the tungsten complexes $\left[\mathrm{WI}_{2}(\mathrm{CO})_{3} \mathrm{~L}_{2}\right]\left[\mathrm{L}_{2}=\left(\mathrm{PPh}_{3}\right)_{2},\left(\mathrm{PEt}_{3}\right)_{2}\right.$ or dppe] at ca. $2000 \mathrm{~cm}^{-1}$ are no longer present. This is supported by the crystal struc-

Table 1 Physical, analytical ${ }^{\mathbf{a}}$ and IR^{b} data for the complexes $\left[\mathrm{W}(\mathrm{S}-\mathrm{S})(\mathrm{CO})_{2} \mathrm{~L}_{2}\right]$

Complex	Colour	Y ield (\%)	A nalysis (\%)			IR (cm^{-1})	
			C	H	N	$v(\mathrm{CO})$	$v(C S)$
$1\left[\mathrm{~W}\left(\mathrm{C}_{3} \mathrm{~S}_{5}\right)(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$	D ark	78	50.0	3.4	-	1943	1062
	brown		(51.3)	(3.8)		1863	
$2\left[\mathrm{~W}\left(\mathrm{C}_{3} \mathrm{~S}_{5}\right)(\mathrm{CO})_{2}\left(\mathrm{PEt}_{3}\right)_{2}\right]$	Brown-	79	30.4	4.6	-	1950	1059
	black		(30.4)	(4.5)		1879	
$3\left[\mathrm{~W}\left(\mathrm{C}_{3} \mathrm{~S}_{5}\right)(\mathrm{CO})_{2}(\mathrm{dppe})\right]$	D ark	48	43.6	3.3	-	1961	1057
	brown		(44.6)	(2.9)		1885	
$4\left[\mathrm{~W}(\mathrm{bdt})(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$	D ark	37	57.8	3.9	-	1955	1031
	brown		(58.4)	(3.7)		1886	1115
$5\left[\mathrm{~W}(\mathrm{bdt})(\mathrm{CO})_{2}\left(\mathrm{PEt}_{3}\right)_{2}\right]$	Brown	50	38.8	5.6	-	1941	1028
			(39.0)	(5.5)		1884	1119
6 [W (bdt)(CO) ${ }_{2}$ (dppe)]	D ark	44	53.3	3.9	-	1946	1027
	brown		(52.4)	(3.6)		1873	1128
7 [W (mnt) $\left.(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$	Brown	65	55.5	3.7	2.2	1955	1091
			(55.8)	(3.3)	(3.1)	1886	1120
$8\left[\mathrm{~W}(\mathrm{mnt})(\mathrm{CO})_{2}\left(\mathrm{PEt}_{3}\right)_{2}\right]$	Brown-	70	34.9	5.0	4.3	1937	1035
	black		(35.1)	(4.9)	(4.5)	1855	1113
$9\left[\mathrm{~W}(\mathrm{mnt})(\mathrm{CO})_{2}(\mathrm{dppe})\right]$	Brown	69	49.2	3.0	3.4	1962	1024
			(49.4)	(3.1)	(3.6)	1889	1154

${ }^{\text {a }}$ C alculated values in parentheses. ${ }^{b}$ R ecorded in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as thin films between NaCl plates.

Table 2 Proton and selected ${ }^{31}$ P NMR data* for the complexes [W (S-S) $(\mathrm{CO})_{2} \mathrm{~L}_{2}$]

Complex	${ }^{1} \mathrm{H}, \delta(\mathrm{J} / \mathrm{Hz})$	${ }^{31} \mathrm{P}, \delta(\mathrm{J} \mathrm{w} / \mathrm{Hz})$
1	$\begin{aligned} & 7.5(\mathrm{~m}, 18 \mathrm{H}, \mathrm{~m}-\mathrm{p}-\mathrm{H} \text { of } \mathrm{Ph}), 7.8(\mathrm{~m}, 12 \\ & \mathrm{H}, \mathrm{o}-\mathrm{H} \text { of } \mathrm{Ph}) \end{aligned}$	-
2	1.1 (dt, $18 \mathrm{H}, \mathrm{J}_{\mathrm{PH}}=15.4, \mathrm{~J}_{\text {нн }}=7.7$, CH_{3}), 1.8 (qnt, $12 \mathrm{H}, \mathrm{J}_{\mathrm{PH}}=\mathrm{J}_{\mathrm{HH}}=7.0$, CH_{2})	23.0 (s, 87)
3	2.5 (br m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 2.7 (br m, 2 H , CH_{2}), $7.4(\mathrm{~m}, 12 \mathrm{H}, \mathrm{m}-, \mathrm{p}-\mathrm{H}$ of Ph$), 7.8$ ($\mathrm{m}, 8 \mathrm{H}, \mathrm{o}-\mathrm{H}$ of Ph)	32.3 (s, 58)
4	7.5 ($\mathrm{m}, 18 \mathrm{H}, \mathrm{m}-\mathrm{p}$ - H of Ph), 7.7 (m, 16 $\mathrm{H}, \mathrm{o}-\mathrm{H}$ of $\mathrm{Ph}, \mathrm{bdt}$)	-
5	$1.4\left(\mathrm{dt}, 18 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=11.4, \mathrm{~J}_{\mathrm{PH}}=5.6\right.$, CH_{3}), 2.4 (qnt, $12 \mathrm{H}, \mathrm{J}_{\mathrm{PH}}=\mathrm{J}_{\mathrm{HH}}=7.1$, CH_{2}), 7.7 (m, 4 H , bdt)	-
6	2.5 (br m, $4 \mathrm{H}, \mathrm{CH}_{2}$), 7.3 (m, 20 H , Ph), 7.7 (m, $4 \mathrm{H}, \mathrm{bdt}$)	-
7	7.4-7.7 (m, Ph)	-
8	$\begin{aligned} & 1.3\left(\mathrm{dt}, 18 \mathrm{H}, \mathrm{~J}_{\mathrm{HH}}=11.6, \mathrm{~J}_{\mathrm{PH}}=5.8,\right. \\ & \left.\mathrm{CH}_{3}\right), 2.5\left(\mathrm{qnt}, 12 \mathrm{H}, \mathrm{~J}_{\mathrm{PH}}=\mathrm{J}_{\mathrm{HH}}=7.1\right. \text {, } \\ & \mathrm{CH}_{2} \text {) } \end{aligned}$	28.6 (s, 87)
9	$\begin{aligned} & 2.4\left(\mathrm{br} \mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.5(\mathrm{br} \mathrm{~m}, 2 \mathrm{H}, \\ & \left.\mathrm{CH}_{2}\right), 7.4(\mathrm{~m}, 20 \mathrm{H}, \mathrm{Ph}) \end{aligned}$	-

* Spectra run in $\mathrm{CDCl}_{3}\left(+25^{\circ} \mathrm{C}\right): \mathrm{s}=$ singlet, $\mathrm{br}=$ broad, $\mathrm{dt}=$ doublet of triplets, $\mathrm{m}=$ multiplet, $\mathrm{qnt}=$ quintet.
tures (see Figs. 1-3) which show only the two cis-carbonyls to be present in the products 2,5 and 6. The near-infrared spectrum of $\left[\mathrm{W}\left(\mathrm{C}_{3} \mathrm{~S}_{5}\right)(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right] 1$ shows two absorption bands at 2325 nm and a broad band at $900-700 \mathrm{~nm}$. The latter band is usually observed for $\mathrm{C}_{3} \mathrm{~S}_{5}$ complexes.
The crystal structures contain discrete molecules of complexes 2,5 and 6, illustrated in Figs. 1, 2 and 3 together with the atomic numbering scheme. The structures of $\mathbf{2}$ and $\mathbf{5}$ are very similar, in particular with regard to the geometry of the coordination sphere. The two carbonyl groups are mutually cis albeit with angles in excess of $90^{\circ}[106.5(4), 108.2(5)$ in 2 and 107.0(6) in 5] (Table 3) and trans to the bidentate $\mathrm{C}_{3} \mathrm{~S}_{5}$ or bdt ligand, though the angles are very much distorted from 180°. This cis-arrangement of two carbonyl ligands is usually found in dicarbonyl structures because their strong π acidity makes the trans arrangement unfavourable. The two triethylphosphine monodentate ligands are also trans to each other though the angles are significantly distorted from linear [142.3(1), 140.2(1) in $\mathbf{2}, 141.1(1)$ in 5]. The geometry of the co-ordination sphere can be considered to be intermediate between octahedral and trigonal prismatic, though closer to the latter.

Fig. 1 Structure of complex 2. Thermal ellipsoids are drawn at 40\% probability. The hydrogen atoms are shown with small arbitrary radii

Distortions in six-co-ordinate dicarbonyl complexes of molybdenum(II) and tungsten(II) have recently been analysed. ${ }^{20,21}$ A part from the structures only slightly distorted from the ideal forms of octahedron and trigonal prism, there is a complete range of intermediate geometries characterised by the twist angle between the two triangular faces. This is 60° for the octahedron and 0° for the trigonal prism. These angles are 23, 23° in $\mathbf{2}$ and 20° in $\mathbf{5}$. These structures conform to the pattern of geometries noted in refs. 20 and 21.
By contrast in the structure of complex 6 there is a bidentate phosphine ligand so that the phosphorus atoms are mutually cis subtending an angle of $76.2(1)^{\circ}$ at the metal atom. The two carbonyl groups are mutually cis but subtending an angle of $76.6(7)^{\circ}$ at the metal. A ccording to the classification described above, ${ }^{20,21}$ when the angle between carbonyl groups is less than 90°, then the structure will be octahedral, but that is not the case here. Indeed the structure is unique in that the angle between carbonyl groups is significantly less than 90° but yet the structure is significantly distorted towards the trigonal prism. The twist angle in this structure is only 12°, so this structure is very close to being an ideal trigonal prism.
The bond lengths in the three structures are as expected. In 2 and 5, tungsten-carbonyl distances are 1.94(2)-1.97(2), W-S

Fig. 2 Structure of complex 5. D etails as in Fig. 1

Fig. 3 Structure of complex 6. D etails as in Fig. 1
2.386(3)-2.405(3) in 2 and 2.383(3), 2.405(4) \AA in 5 and $W-P$ $2.458(3)-2.467(3)$ in 2 and 2.475(3), 2.483(3) \AA in 5. There seems to be little difference between the effects therefore of $\mathrm{C}_{3} \mathrm{~S}_{5}$ and bdt on the co-ordination sphere. In 6, while the geometry is different because of the bidentate phosphorus ligand, there are no major differences in dimensions with $W-C$ 1.95(2), 1.99(2), W-S 2.369(4), 2.392(4) and W-P 2.472(5), 2.504(4) A.

The ${ }^{1} \mathrm{H}$ NMR spectra of complexes 1-9 conform with the structures shown in Figs. 1-3. The ${ }^{31} \mathrm{P}-\{\mathrm{H}\} \mathrm{N} M \mathrm{R}$ spectra of the complexes $\left[\mathrm{W}(\mathrm{S}-\mathrm{S})(\mathrm{CO})_{2} \mathrm{~L}_{2}\right]\left[\mathrm{S}-\mathrm{S}=\mathrm{C}_{3} \mathrm{~S}_{5}, \mathrm{~L}_{2}=\left(\mathrm{PEt}_{3}\right)_{2} 2\right.$ or dppe 3; $S-S=m n t, L_{2}=\left(P E t_{3}\right)_{2} 8$] show a singlet resonance with tungsten satellites, see Table 2.

Complex 1 is six-co-ordinate, having lost the capping carbonyl observed in the original diiodo complex $\left[\mathrm{WI}_{2}(\mathrm{CO})_{3}-\right.$ $\left(\mathrm{PPh}_{3}\right)_{2}$]. Attempts to reintroduce a third carbonyl ligand by saturating a solution of complex 1 in dichloromethane with carbon monoxide were unsuccessful.

In conclusion, we have successfully prepared and characterised the first examples of mono(dithiolene) complexes of tungsten(iI), and are currently exploring their non-linear optical properties.

Experimental

The preparation and purification of complexes 1-9 were carried out under an atmosphere of dry nitrogen using Schlenk-line

Table 3 Dimensions (distances in \AA, angles in ${ }^{\circ}$) in the metal coordination spheres of the three structures

Complex 2	M olecule A	M olecule B
W (1)-C (200)	1.958(10)	1.967(11)
W (1)-C(100)	1.971(12)	1.936(13)
W (1)-S(2)	2.386(3)	2.397 (3)
W (1)-S(1)	2.397(3)	2.405(3)
W (1)-P(3)	2.460 (3)	2.467(3)
W (1)-P(4)	2.466(3)	2.458(3)
C(200)-W (1)-C(100)	106.5(4)	108.2(5)
$\mathrm{C}(200)-\mathrm{W}(1)-\mathrm{S}(2)$	155.4(3)	157.4(3)
$\mathrm{C}(100)-\mathrm{W}(1)-\mathrm{S}(2)$	87.5(3)	87.0(3)
$\mathrm{C}(200)-\mathrm{W}(1)-\mathrm{S}(1)$	90.0(3)	88.0(3)
$\mathrm{C}(100)-\mathrm{W}(1)-\mathrm{S}(1)$	155.2(3)	155.5(3)
$\mathrm{S}(1)-\mathrm{W}(1)-\mathrm{S}(2)$	84.26(10)	83.78(9)
C(200)-W (1)-P(3)	78.4(3)	77.9(3)
$\mathrm{C}(100)-\mathrm{W}(1)-\mathrm{P}(3)$	79.6(3)	78.6(3)
$\mathrm{S}(2)-\mathrm{W}(1)-\mathrm{P}(3)$	124.79(10)	122.51(9)
$\mathrm{S}(1)-\mathrm{W}(1)-\mathrm{P}(3)$	86.06(9)	87.30(11)
$\mathrm{C}(200)-\mathrm{W}(1)-\mathrm{P}(4)$	78.4(3)	80.4(3)
$\mathrm{C}(100)-\mathrm{W}(1)-\mathrm{P}(4)$	79.0(3)	77.1(3)
$\mathrm{S}(2)-\mathrm{W}(1)-\mathrm{P}(4)$	84.79(11)	87.11(8)
$\mathrm{S}(1)-\mathrm{W}(1)-\mathrm{P}(4)$	123.22(10)	124.86(11)
$\mathrm{P}(3)-\mathrm{W}(1)-\mathrm{P}(4)$	142.28(9)	140.22(10)

Complex 5

W-C(100)	1.969(11)	W-S(2)	2.405(4)
W-C(200)	2.01(2)	W-P(3)	2.475(3)
W-S(1)	2.383(3)	W-P(4)	2.483(3)
$\mathrm{C}(100)-\mathrm{W}-\mathrm{C}(200)$	107.0(6)	$\mathrm{S}(1)-\mathrm{W}-\mathrm{P}(3)$	84.23(11)
C(100)-W-S(1)	152.2(4)	$\mathrm{S}(2)-\mathrm{W}-\mathrm{P} 3)$	126.52(13)
$\mathrm{C}(200)-\mathrm{W}-\mathrm{S}(1)$	90.6(4)	C(100)-W-(P4)	78.2(3)
C(100)-W-S(2)	90.0(4)	C(200)-W-(P4)	79.3(4)
C(200)-W-S(2)	153.4(4)	S(1)-W-(P4)	127.17(11)
$\mathrm{S}(1)-\mathrm{W}-\mathrm{S}(2)$	82.46(12)	S(2)-W-(P4)	84.44(12)
$\mathrm{C}(100)-\mathrm{W}-\mathrm{P}(3)$	78.9(3)	P(3)-W-(P4)	141.09(12)
C(200)-W-P(3)	77.8(4)		
Complex 6			
W-C(200)	1.95(2)	W-S(2)	2.392(4)
W-C(100)	1.99(2)	W-P(3)	2.472(5)
W-S(1)	2.369(4)	W-P(4)	2.504(4)
C(200)-W-C(100)	76.6(7)	$\mathrm{S}(1)-\mathrm{W}-\mathrm{P}(3)$	130.3(2)
C(200)-W-S(1)	89.6(5)	$\mathrm{S}(2)-\mathrm{W}-\mathrm{P} 3)$	84.9(2)
C(100)-W-S(1)	146.2(5)	C(200)-W-(P4)	75.7(5)
C(200)-W-S(2)	133.2(5)	C(100)-W-(P4)	113.5(4)
$\mathrm{C}(100)-\mathrm{W}-\mathrm{S}(2)$	84.6(4)	$\mathrm{S}(1)-\mathrm{W}-\mathrm{P} 4)$	92.00(14)
$\mathrm{S}(1)-\mathrm{W}-\mathrm{S}(2)$	82.84(14)	S(2)-W-(P4)	150.3(2)
C(200)-W-P(3)	131.3(5)	P(3)-W-(P4)	76.23(14)
$\mathrm{C}(100)-\mathrm{W}-\mathrm{P}(3)$	79.3(5)		

techniques. Ethanol was dried over magnesium-iodine and distilled prior to use. Dichloromethane was dried over $\mathrm{P}_{2} \mathrm{O}_{5}$ and distilled before use The complexes $\left[\mathrm{WI}_{2}\left(\mathrm{CO}_{3} \mathrm{~L}_{2}\right]\right.$ [$\left[\mathrm{L}_{2}=\right.$ $\left(\mathrm{PPh}_{3}\right)_{2},{ }^{16}\left(\mathrm{PEt}_{3}\right)_{2}{ }^{17}$ or dppe $\left.{ }^{18}\right], \mathrm{Na}_{2}\left[\mathrm{C}_{3} \mathrm{~S}_{5}\right]^{22}$ and $\mathrm{Na} \mathrm{a}_{2}[\mathrm{mnt}]^{23}$ were prepared according to the literature methods, and all the chemicals were obtained from commercial sources.

Elemental analyses (C, H and N) were recorded on a Carlo Erba Elemental A nalyser M OD 1106 (using helium as the carrier gas) and ${ }^{1} \mathrm{H}$ and ${ }^{31}$ P NMR spectra on a Bruker AC/250 spectrometer (${ }^{1} \mathrm{H}$ referenced to tetramethylsilane, ${ }^{31}$ p to 85% $\mathrm{H}_{3} \mathrm{PO}_{4}$). Infrared spectra were recorded on a Perkin-EImer 1600 FTIR spectrophotometer, the near-infrared spectrum on a Beckman DK -2A ratio-recording spectrophotometer. M agnetic susceptibilities were recorded on a Johnson-M atthey magnetic susceptibility balance. The FAB mass spectra were recorded on a VG-A utospec Instrument using Cs^{+}ions at 25 kV bombarded onto a sample dissolved in a 3-nitrobenzyl alcohol matrix target (E PSRC M ass Spec. Instr., Swansea).

Table 4 Crystal data and structure refinement for complexes 2,5 and 6

	2	5	$6 \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$
Empirical formula	$\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{PS}_{6} \mathrm{~W}$	$\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{~S}_{2} \mathrm{~W}$	$\mathrm{C}_{34.5} \mathrm{H}_{29} \mathrm{ClO}_{2} \mathrm{P}_{2} \mathrm{~S}_{2} \mathrm{~W}$
M	673.59	616.38	820.94
Crystal system	Triclinic	Triclinic	M onoclinic
Space group	P1	P1	P $21 / n$
a/Å	11.117(9)	8.223(7)	8.047(8)
b/Å	12.776(9)	11.102(7)	18.581(14)
c/Å	17.901(14)	14.391(8)	23.070(14)
$\alpha /{ }^{\circ}$	91.95(1)	97.21(1)	
$\beta /{ }^{\circ}$	91.09(1)	101.11(1)	93.22(1)
$\gamma /{ }^{\circ}$	94.06(1)	98.47(1)	
\cup / \AA^{3}	2534	1259	3444
Z	4	2	4
$\mathrm{D}_{\mathrm{c}} / \mathrm{M} \mathrm{g} \mathrm{mm}^{-3}$	1.766	1.626	1.583
μ / mm^{-1}	5.127	4.893	3.675
F (000)	1332	612	1620
Crystal size/mm	$0.15 \times 0.20 \times 0.25$	$0.20 \times 0.35 \times 0.25$	$0.25 \times 0.25 \times 0.10$
θ R ange for data collection/ ${ }^{\circ}$	5.46-24.72	2.66-24.03	2.08-25.20
hkl R anges	-13 to 12, -14 to 14, 0-20	-9 to 9, -12 to 12, 0-15	0-9, -21 to 21, -27 to 27
R eflections measured	12665	4725	9500
Independent reflection ($\mathrm{R}_{\text {int }}$)	6499 (0.0303)	2873 (0.0293)	5461 (0.0700)
D ata, restraints, parameters	6499, 0, 501	2873, 0, 251	5461, 0, 388
G oodness of fit on F^{2}	1.111	1.094	0.992
a, b in weighting scheme*	0.0448, 23.659	0.130, 3.598	0.158, 0.000
Final R 1, wR 2 indices [$1>2 \sigma(1)$]	0.0451, 0.1085	0.0497, 0.1527	0.0838, 0.2073
(all data)	0.0568, 0.1158	0.0550, 0.1603	0.1471, 0.2458
L argest difference peak and hole/e \AA^{-3}	1.052, -1.136	0.813, -1.824	2.464, -1.731
* $w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(a P)^{2}+b P\right]$, where $P=\left(F_{0}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$.			

Preparations

$\left[\mathrm{W}\left(\mathbf{C}_{3} \mathbf{S}_{5}\right)(\mathbf{C O})_{2}\left(\mathbf{P P h}_{3}\right)_{2}\right]$ 1. To sodium metal $(0.032 \mathrm{~g}, 1.4$ mmol) dissolved in dry ethanol was added 4,5 -bis(benzoylthio)-1,3-dithiole-2-thione ($0.28 \mathrm{~g}, 0.3 \mathrm{mmol}$) with stirring under a stream of dinitrogen. The mixture was stirred under N_{2} for 45 min . The deep red solution was added dropwise with stirring to a solution of $\left[\mathrm{WI}_{2}(\mathrm{CO})_{3}\left(\mathrm{PPh}_{3}\right)_{2}\right](0.72 \mathrm{~g}, 0.7 \mathrm{mmol})$ in acetonitrile $\left(10 \mathrm{~cm}^{3}\right)$ and stirred for 16 h . The solvent was removed in vacuo and the dark, oily powder resolvated in dry, degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, filtered and the solvent removed in vacuo. This procedure was repeated several times to ensure removal of sodium iodide. The oily product was recrystallised from dry dichloromethane and hexane to give $\left[W\left(\mathrm{C}_{3} \mathrm{~S}_{5}\right)(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right] 1$ (yield $=0.52 \mathrm{~g}, 78 \%$. See Table 1 for physical and analytical data.

Complexes 2 and 3 were prepared in a similar manner. A nalytically pure crystals suitable for X-ray crystallography were grown by resolvating $\mathbf{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane (4:1) at $0^{\circ} \mathrm{C}$.
[W (bdt)($\left.\left.\mathrm{CO}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ 4. To a stirring suspension of $\mathrm{H}_{2} \mathrm{bdt}$ ($0.04 \mathrm{~g}, 0.3 \mathrm{mmol}$) in acetonitrile ($5 \mathrm{~cm}^{3}$) was added dropwise a solution of $\left[\mathrm{WI}_{2}(\mathrm{CO})_{3}\left(\mathrm{PPh}_{3}\right)_{2}\right](0.29 \mathrm{~g}, 0.3 \mathrm{mmol})$ in acetonitrile $\left(10 \mathrm{~cm}^{3}\right)$. The reaction was stirred for 16 h , filtered and the solvent removed in vacuo. The product was washed with acetone and recrystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-acetone to yield $\left[\mathrm{W}\right.$ (bdt) $\left.(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right] 4$ (yield $\left.=0.13 \mathrm{~g}, 37 \%\right)$.

Complexes 5 and $\mathbf{6}$ were prepared in a similar way, and purified by recrystallisation from acetonitrile. A nalytically pure crystals suitable for X -ray crystallography were grown by resolvating 5 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane (4:1) and storing the solution at $0^{\circ} \mathrm{C}$. A nalytically pure crystals suitable for X-ray crystallography of 6 were grown in a similar manner.
[W (mnt)($\left.\mathbf{C O})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ 7. To a stirring solution of $\left[\mathrm{WI}_{2}\left(\mathrm{CO}_{3}\right)_{3}\left(\mathrm{PPh}_{3}\right)_{2}\right](2.81 \mathrm{~g}, 2.7 \mathrm{mmol})$ in acetonitrile $\left(10 \mathrm{~cm}^{3}\right)$ was added a solution of $\mathrm{Na}_{2}[\mathrm{mnt}](0.5 \mathrm{~g}, 2.7 \mathrm{mmol})$ in acetonitrile $\left(20 \mathrm{~cm}^{3}\right)$ dropwise under dinitrogen. The mixture was stirred for 4 h and the solvent removed in vacuo. The dark brown oily product was resolvated in dry dichloromethane, filtered and the solvent removed in vacuo. This was repeated sev-
eral times. The product was recrystallised from acetonitrile to give $\left[\mathrm{W}(\mathrm{mnt})(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right] 7$ (yield $\left.=1.59 \mathrm{~g}, 65 \%\right)$. Complexes 8 and 9 were prepared in a similar manner.

X-R ay crystallography

Crystal data for complexes 2,5 and $\mathbf{6}$ are given in Table 4, together with refinement details. D ata for all three crystals were collected at $293(2) \mathrm{K}$ with $\mathrm{Mo}-\mathrm{K} \alpha$ radiation ($\lambda 0.71073 \AA$) using the M A R R esearch image-plate system. The crystals were positioned at 75 mm from the image plate. N inety five frames were measured at 2° intervals with a counting time of 2 min . D ata analysis was carried out with the XDS program. ${ }^{24}$ The three structures were solved by heavy-atom methods using SHELXS $86 .{ }^{25} \mathrm{In} 2$ there were two molecules in the asymmetric unit with equivalent dimensions. For all three structures the non-hydrogen atoms were refined anisotropically and hydrogen atoms, included in calculated positions, were refined isotropically. In 6 there was a disordered dichloromethane solvent molecule refined with 50% occupancy. One chlorine occupied two possible positions, each given 25% occupancy. The solvent atoms were given isotropic thermal parameters. In all three structures hydrogen atoms were positioned geometrically and given thermal factors of 1.2 times those of the atom to which they were bonded. M ethyl groups were refined as rigid groups. Empirical absorption corrections were carried out. ${ }^{26}$ The final refinements were carried out on F^{2} using SHELXL. ${ }^{27}$
A tomic coordinates, thermal parameters, and bond lengths and angles have been deposited at the Cambridge Crystallographic Data Centre (CCDC). See Instructions for Authors, J. Chem. Soc., D alton Trans., 1997, Issue 1. A ny request to the CCDC for this material should quote the full literature citation and the reference number 186/429.

Acknowledgements

E. E. P. thanks the EPSRC for a studentship, N. R . for a postdoctoral fellowship and we thank the EPSRC and the University of Reading for funds for the image-plate system. We also thank the EPSRC Service at Swansea for FA B mass spectra.

References

1 P. Cassoux, L. Valade, H. K obayashi, A K obayashi, R. A . Clark and A. E. U nderhill, C oord. Chem. Rev., 1991, 110, 115.
2 A. T. Coomber, D. Beljonne, R . H. Friend, J. L. Bredas, A . Charlton, N. Robertson, A . E. U nderhill, M . K urmoo and P. D ay, N ature (L ondon), 1996, 380, 144.
3 C. S. Winter, S. N. Oliver, J. D. Rush, C. A. S. Hill and A. E. U nderhill, J. M ater. C hem., 1992, 2, 443.
4 A. K obayashi, R. K ato, A. M iyamoto, T. N aito, H. K obayashi, R . A. Clark and A. E. U nderhill, C hem. Lett., 1991, 2163.
5 M. L. H. G reen and W. E. Lindsell, J. C hem. Soc. A, 1967, 1455.
6 R. Eisenberg, P rog. Inorg. Chem., 1970, 12, 295.
7 M . Fourmigué and C. Coulon, Adv. M ater., 1994, 6, 948.
8 M. Fourmigué, C. Lenoir, C. Coulon, F. Guyon and J. A maudrut, Inorg. Chem., 1995, 34, 4979.
9 S. Inomata, H. Takano, K. Hiyama, H. Tobita and H. Ogino, O rganometallics, 1995, 14, 2112.
10 K. Shimuzu, H . Ikehara, M . K ajitani, H. U shijima, T. A kiyama and A Sugimori, J. Electroanal. Chem. Interfacial Electrochem., 1995, 396, 465.
11 F. Guyon, M. Fourmigué, P. Audebert and J. Amaudrut, Inorg. C him. A cta, 1995, 239, 117.
12 K. Y. Yang, R.L. Verran, S. G. Bott and M . G. Richmond, J. C oord Chem., 1996, 38, 75.
13 G. M . T. Cheetham, M . M . H arding, J. L. H aggitt, D. M . P. M ingos and H. R. Powell, J. Chem. Soc., C hem. C ommun., 1993, 1000.

14 N. G. Connelly, J. G. Crossley, A . G. Orpen and H. Salter, J. Organomet. C hem., 1994, 480, C 12.
15 P. K. Baker, Adv. Organomet. C hem., 1996, 40, 45.
16 P. K. Baker, A. I. Clark, M. G. B. Drew, M. M. M eehan, E. E. Parker, R. L. Richards and A. E. Underhill, unpublished work.
17 P. K. Baker and S. G. Fraser, Inorg. Chim. A cta, 1986, 116, L 1.
18 P. K. Baker and S. G. Fraser, Inorg. Chim. A cta, 1987, 130, 61.
19 C. W. Schlaepfer and K . N akamoto, Inorg. Chem., 1975, 14, 1338.
20 T. E. Burrow, D. L. Hughes, A. J. Lough, M. J. M aguire, R. H. M orris and R. L. Richards, J. Chem. Soc., Dalton Trans., 1995, 1315.

21 P. K ubáček and R. H offmann, J. A m. C hem. Soc., 1981, 103, 4320.
22 G. Steimecke, H. J. Sieler, R. K irmse and E. Hayer, P hosphorus Sulfur, 1979, 7, 49.
23 A. D avison and R. H. H olm, Inorg. Synth., 1967, 10, 8.
24 W. K absch, J. A ppl. C rystallogr., 1988, 21, 916.
25 SHELXS 86, G. M. Sheldrick, A cta C rystallogr., Sect. A, 1990, 46, 467.

26 N. Walker and D. Stuart, A cta C rystallogr., Sect. A , 1983, 39, 158.
27 SHELXL, G. M. Sheldrick, Program for Crystal Structure Refinement, U niversity of G öttingen, 1993.

R eceived 28th N ovember 1996; Paper 6/08056A

